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3He-A, defects crossing the AI-& phase boundary 

F Alexander Bais and Adriaan M J Schakelt 
Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE 
Amsterdam, The Netherlands 

Received 11 August 1989 

Abstract. The fate of topologically stable defects in the 3He-A1 phase, which exists in a 
magnetic field, is analysed when this phase goes over to the A2 phase at lower temperatures. 
It is shown that in magnetic fields that are not too large the A1 monopoles become confined 
in the A2 phase. It is argued that the Mermin-Ho relation breaks down in the presence of 
vortons. 

1. Introduction 

At zero magnetic field there are two superfluid 3He phases: 3He-A with symmetry 
U(lf x U(l)L-*, and 3He-B with symmetry S0(3)SfL. These residual symmetry groups 
are subgroups of 

G = SO(3)’ x S 0 ( 3 ) L  x U(l)@ 

which is the symmetry group of normal liquid 3He. Depending on the pressure, P ,  
the normal Fermi liquid may undergo a phase transition in the B phase either directly 
( P  < 21 bar) or via the A phase (P > 21 bar). The transitions from the normal to 
the €3 and A phases are second-order transitions. The transition from the A to the B 
phase is a first-order transition. 

On applying a magnetic field the A and B phases go over to extended A and B 
phases, the so-called A, and B, phases, respectively. The symmetry of the A, phase 
is Ci-* x U(l)L-@ [l], and the symmetry of the B, phase is U(l)S+L, which is the 
U(l) subgroup of the symmetry group of 3He-B, consisting of rotations about the 
magnetic field axis. The A,-B, transition is, like the A-B transition, of first order. 
With increasing magnetic field the A, regime increases at the expense of the B, phase. 
Another feature of applying a magnetic field is the appearance of the 3He-A, phase 
between the A, phase and the normal phase (N). The symmetry group of the A, phase 
is the group U(l)s-* x U(l)L-*, and both the transitions N-A, and A,-A, are of 
second order. 

In the broken phases involved, there exists a variety of topologically stable defects. 
The purpose of this paper is to analyse defect transmutation in the sequence N 3 A, 
-+ A, of second-order phase transitions. We do not include the transition A,-B, as it 
is of first order. 

t Present address: Physics Department, University of British Columbia, Vancouver, BC, Canada V6T 2A6. 
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However, before entering in a discussion of defect transformation in sections 3 and 
4, we first elaborate on objects in the A, phase that look like true point defects, but that 
are not topologically stable. There are also similar objects in the 'He-A phase. There 
they are called vortons. They were first introduced by Blaha [2], see also [3]. Contrary 
to the claim made in [2], these objects are topologically trivial [4]. In section 2, we 
clarify the crucial difference in topological nature between vortons and true monopoles 
(point defects) and comment on the validity of the so-called Mermin-Ho relation [5] 
in this context. To facilitate the discussion we introduce the language of non-Abelian 
gauge theories. Those interested only in the survival criteria of topologically stable 
defects crossing through a phase boundary could skip the following section. 

2. Vortons in 'He-A, 

For convenience, let us first consider the 'He-A case. The ordering matrix in this 
instance has the value [6] 

where m, and mL are the spin and orbital magnetic quantum numbers respectively, 
m,, mL = 1,0, -1. In dyadic notation (2.1) becomes 

where 6' = - ( l /a ) (C'  + ig), with 6',C2,@ = ê ' x 3 a set of orthonormal vectors in ' 
orbital space, and d a unit vector in spin space. (The vector 3 is usually denoted by 1 
and is called the orbital vector.) The residual symmetry of the A phase is 

H = U(1)' x U(l)L-* (2.3) 

where U(l)L-* denotes the group of simultaneous rotations about the @ axis and 
gauge transformations. It is easily checked that the ordering matrix (2.2) is indeed 
invariant under this combined action : 

The factor exp(-iA) in (2.4) is the compensating gauge transformation. An important 
observation made by Volovik in this context [7] is that the transformation variable 
A of the residual U(l)L-* symmetry may depecd on spacetime without spoiling the 
invariance of the theory. This follows trivially from the fact that under local U(l)L-* 
transformations 

since mL = 1. Therefore, the gradient terms in the Ginzburg-Landau functional will 
also be invariant under local U( l)L-* transformations. Hence, the U( l)'*-@ symmetry 
is a local gauge symmetry. Note, however, that there is no gauge field associated with 
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the local symmetry. This is similar to the case of CP, models which also possess a 
local U( 1) gauge invariance without having a dynamical gauge field. Notwithstanding 
this fact, one may introduce a subsidiary field here that formally plays the role of a 
gauge field, and that makes explicit the local gauge invariance [8]. We will see that 
also in the case of 3He-A one may introduce a subsidiary gauge field. 

To obtain the Abelian connection we will employ the fact that the ordering matrix 
amsmL transforms as a vector under S0(3)L. Let us first consider the slightly more 
general case of an order parameter y which transforms under S0(3)L according to 
some arbitrary unitary representation. We write 

v(x) = gWP0 (2.6) 

with g(x) E S0(3)L and yo some constant value. We have thus expressed the value 
of ~ ( x )  at every point in spacetime as some rotation of the constant value yo. The 
rotation matrix g(x) differs from point to point, i.e. the spacetime dependence of 
~ ( x )  is introduced via the transformation g(x). This can always be done in this way 
provided the norm of y(x) is spacetime independent. This assumption is valid for 
weakly inhomogeneous states (the London limit). Next, we take the exterior derivative 
of (2.6) 

dYW = dg Yo = dg g-'y(x) (2.7) 

where dgg-' is the so-called right-invariant Maurer-Cartan form. Since dgg-' is an 
element of the Lie algebra it can be expanded in terms of the Hermitian generators 
T i  (A = 1,2,3) of the algebra. Therefore 

d y  = i E A T i y  (2.8) 

with EA one-forms 

EA = EAp dxp. (2.9) 

The representation of the generators T i  is fixed by the representation according to 
which v transforms. Equation (2.8) describes infinitesimal rotations with EA the 
infinitesimal rotation angle. This equation may be cast in the form of a covariant 
derivative operating on y: 

D y = O  (2.10) 

with D := d - iEATi,  where the field EA can now be interpreted as an S0(3)L gauge 
connection. On account of the identity 

d(dg g-') - dg g-' A dg g-' = 0 (2.1 1 )  

it follows that the corresponding field strength F A  is zero, where 

F A  := dEA + E B  A E' (2.12) 

with ie,,, the structure constants of the s 0 ( 3 ) ~  algebra: 

(2.13) 
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In components, the condition F A  = 0 is 

(2.14) A A A B C  Fpy = a,E - BYE + E A B C  E = 0 

where we used the antisymmetry of the structure constants. 
Let us now focus on the case of superfluid 3He-A. Since the ordering matrix, which 

transforms according to the adjoint representation under S 0 ( 3 ) L ,  represented in the 
dyadic notation (2.2) involves the dreibein e*', g , d ,  it follows from (2.8) that the spatial 
derivative of d is given by7 

(2.15) 

and similar equations for e*' and k2. Equation (2.15) has a general solution which is 
locally of the form 

aieA A3 = - E ~ ~ ~ E ~  2; 

(2.16) 

where the Abelian connection one-form a = $1 E A  denotes the infinitesimal rotation 
angle associated with infinitesimal rotations about the d vector. 

In fact, the U( l )  gauge connection a thus obtained is the one that is relevant for 
the description of 3He-A. For instance, the well known expression for the superfluid 
momentum p s  [7] can be cast in a form such that it explicitly contains a,: 

Ps,i = i (ai4 + ai) (2.17) 

where 4 is the transformation variable of the gauge group U(l)*. The usual form is 
obtained by writing a, in terms of e*' and P; we have 

a, = e*' . a,P (2.18) 

by virtue of (2.15) with the superscript 3 replaced by 2. Since under local U(l)L-* 
transformations 

4 - + $ - A  a i - t a i + a i A  (2.19) 

expression (2.17) clearly brings out the fact that p s ,  being a physical observable, is 
invariant under these local transformations. 

The local expression for the Abelian field strength f i j  

f . .  = a.a. - 8.a.  (2.20) 11 I J  1 1  

follows directly from (2.14); we find that the field strength is in general non-zero: 

(2.21) 

By introducing the 'magnetic' field b, := i E i j k f j k ,  equation (2.21) with (2.20) yields the 
well known Mermin-Ho relation [5] 

(2.22) b, = i&.. 2 l ik  23. (483 x a,&). 
t The field EAz is minus the tensor field introduced by Mermin and Ho [ 5 ] .  



He-A, defects crossing the A ,  -A, phase boundary 5057 

Now, let us consider the point defects first stubied by Blaha [2]. Although they 
are not topologically stable as such, they may be made to become so by imposing the 
proper boundary conditions. Because of the tendency of the orbital rotation vector 
@ to orient itself perpendicular to the boundary of the vessel containing the liquid, a 
possible choice is a spherical vessel [9]. With the point defect located at the origin one 
obteins the 'hedgehog' solution 3 = t. A possible choice of the two other vielbeins is: 
ê ' = $3 and P = 8, where $3 and 8 are unit vectors in the spherical coordinate system. 
The associated vector potential is of Dirac type 

cos 0 
r sin 0 $3 a = -  (2.23) 

with two string singularities at 0 = 0 and 8 = n, respectively. These vortex lines, 
each of unit flux (= 2 n ) ,  are the famous Dirac strings. However, unlike in the case 
with genuine magnetic monopoles these strings are physical, and hence U( l)L-" gauge 
invariant. In [9], Mermin gave a topological argument involving Euler's characteristic 
for the existence of these line singularities in the spherical vessel. 

To illustrate the invariance of the strings take q5 = 0 and let a be given by (2 .23) ,  
then 

p s 2  = ' a  (2.24) 

and p s  has two line singularities. Next we perform a local U(l)L-@ transformation with 
transformation variable A = cp where cp is the azimuth angle in real space. In this way 
the vector potential becomes 

cos8+ 1 
r sin 0 a =  $3 (2.25) 

which has a single vortex line of two flux quanta emanating from the north pole. But 
the choice A = cp introduces a string of unit flux in the &field, since 4 + 4 - A 
under local U( l)L-@ transformations. The resulting expression for the observable 
superfluid momentum has again two string singularities of unit flux at 8 = 0 and 
8 = n, respectively; see figure 1. Hence the strings do indeed appear in a gauge 
invariant, observable quantity. 

27r 

- - 

27r 

4T 

4- 27r 

Figure 1. Gauge invariance of the vortex lines in the superfluid momentum field. 
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This fact, that the string singularity is physical, encourages us to take a closer 
look at  the Mermin-Ho relation and consider its global properties. By integrating the 
right-hand side of (2.22) over the surface of the spherical vessel containing the liquid, 
with @ = t, we obtain 47c, while the left-hand side, assuming aJ is globally defined on 
the surface, will vanish by virtue of Stokes's theorem. Consequently, the Mermin-Ho 
relation (2.21) cannot be valid everywhere. We can imagine two possibilities. The 
first one is that the right-hand side is correct everywhere; then a, describes a gauge 
field associated with a non-trivial U( l )  fibre bundle over the sphere and (2.20) is only 
valid locally. This is so because the integral of the magnetic field over the two-sphere 
corresponds to the first Chern number which is non-zero. Therefore, we have to 
define two coordinate patches on the sphere; the relation (2.20) then holds within each 
coordinate patch, and has to be integrated locally. This would correspond with the 
Wu-Yang prescription for a genuine (magnetic) monopole field [lo]. 

The other possibility, which is the correct one for the case at hand, is that we 
interpret the left-hand side of the Mermin-Ho relation globally in which case the right- 
hand side of the equation is incomplete. If we take, for example, the aforementioned 
Dirac potential, it is clear that a string singular term has to be added. This term 
should, of course, also arise from a careful calculation using (2.18). Indeed, we find 

f,, = (a,&?,@ - d,@,@) sin8 + 2 n ~ , ~  COS 86(x)6(y)  (2.26) 

where the second term is the singular term 

2nsrJ3 COS es (x)6 (y) = +2nErJ36 (x)6 ( y )  (2.27) 

for the string along the positive and negative z axis, respectively. So, we see that in 
the presence of vortons the Mermin-Ho relation is not valid as such. A singular term 
has to be added to account for the (physical) string. The total magnetic charge of 
the vorton is consequently zero: the magnetic flux emanating from the point defect is 
supplied by the string. 

Let us now consider 3He-A,. The symmetry group of this phase is the group 
U(l)'-* x U(l)L-* which are both local symmetry groups. The ordering matrix is given 
by [61 

/ 1  0 o \  
= ( 0  o 0 )  

0 0 0  
(2.28) 

or in dyadic notation 

amsmL = i3& aiL (2.29) 

where i?+ = -(l/d)(i?' + i8 ) ,  with i?',8,03 = 8' x 8 a set of orthonormal vectors in 
spin space. As the superfluid momentum [7] 

(2.30) 

is a physical quantity, it is invariant under local U(l)s-* as well as under local U(l)L-* 
transformations. To make this apparent one can introduce gauge potentials us and uL 
for the two local gauge groups, and write: 

(2.31) 

ps,i = +(ai$ + G' . ai02 + 8' ' a,& 

ps,i = ;(ai+ + as + a;). 

Mutatis mutandis this case may be analysed in the szme way as the 3He-A case. Suffice 
it to say that the string singularities in us, uL and (p may cancel in such a way that the 
corresponding superfluid momentum field has no vortex lines. 
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3. Defect transmutation 

Our analysis of the fate of topologically stable objects in the A, phase when this phase 
goes over in the A, phase at lower temperatures is based on homotopy theory [l l] .  
(For general accounts on homotopy theory see, for example, [12], [13] or [14].) In this 
section, we first briefly review [15] where one of us analyses how in general defects 
transmute when crossing a phase boundary. 

Consider a system with symmetry G undergoing two subsequent second-order phase 
transitions G -+ H ,  -+ H,. Without loss of generality we may assume that the group 
G is connected, i.e. n,(G) = 0, and simply connected, i.e. nl(G) = 0. The homotopy 
groups n 2 ( G / H 1 )  and nl(G/H1) denote the topological charges of respectively the point 
and line singularities in the H ,  phase, when this state is reached by breaking G -+ HI. 
Similarly, ni(G/H2),  with i = 1,2, denote the charges of the point and line defects in 
the H ,  phase when we have the transition G -+ H,. However, since G is not directly 
broken to H,,  but via H,,  we cannot expect n1(G/H2) to describe all line singularities 
in the H ,  phase. It may well be the case, for example, that point singularities that are 
present in the HI phase develop a line singularity in the second transition H ,  -+ H 2 .  
These line singularities are not accounted for by n1(G/H2). On the other hand, it turns 
out that n, (G/H2)  describes all point defects in the H ,  phase, including those that 
descend from point defects in the H ,  phase. 

First, we discuss what might happen with the line defects in the H ,  phase that 
descend from point defects in the HI phase. The argument is of a dynamical character 
and does not follow from topological considerations. In crossing the phase boundary 
between the two domains with HI and H ,  symmetry, the radial point-defect configu- 
ration is expected to bend over in a vortex-type configuration. That is, the flux of the 
point defect will be squeezed into a tube upon entering the H ,  phase. If the length of 
the tube is such that its total energy becomes of order twice the energy of the point 
defect, then it will be energetically favourable to create a pair of H ,  point defects with 
total charge zero. In this way, these point defects become confined in the H ,  phase. 
We will refer to the associated line defects as finite or open line defects as opposed 
to ordinary, infinite line singularities which may also be finite but closed. It is to be 
remarked here that it is not mandatory for the cores of these line defects in the H2 
phase to be in the normal state; they may be in the H ,  state. 

The relevant information about the topological objects we are interested in is 
contained in the homotopy sequence [15] 

0 7 1 2 W 1 )  -+ 712(Hl/H2) -+ 712(G/H2) -+ 712(G/H1) 

-+ 711(H,/H,) -+ 711(G/H2) -+ n,(G/H1). (3.1) 
This sequence is exact, which means that the kernel (Ker ) of each map is the image 
(Im ) of the previous map. More specifically, we have the following isomorphisms: 

0 = Ker {712(Hl/H,) -+ 712(G/H,)> (3.2.) 

Im {712(H1/H2) -+ 712(G/H,)} Ker {712(G/H2) -+ 712(G/H1)} (3.3) 
Im {712(G/H2) -+ 712(G/ff1)1 = Ker {712(G/HI) -+ 721(Hl/H2)> (3.4) 
Im {712(G/H1) -+ 711(HI/H2)) = Ker {7CI(H1/H,) -+ 711(G/H,)} (3.5) 
Im {711(H1/H2) -+ 711(G/H2)> Ker {711(G/H,) -+ nI(G/HL)}. (3.6) 

71,(H1/H*) Im {712(Hl/H2) -+ n,(G/H,)) = 712(G/H*) (3.7) 

The isomorphism (3.2) implies that 
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and n2(G/H2)  therefore describes indeed all point singularities in the H ,  phase. 
From (3.3) it follows that those monopoles in the H2 phase that can also exist 

when, instead of G, H ,  is broken to H ,  have a trivial monopole charge in H , .  
It also follows from (3.3) that all point defects in the H ,  phase not contained in 
Im { n 2 ( H 1 / H 2 )  + n2(G/H2)} correspond to non-trivial elements of n2(G/H1), i.e. these 
point defects descend from point defects that already exist in the H ,  phase. This 
statement is summarised as follows: 

where the first isomorphism follows from the exactness of the sequence (3.1). We note 
that these point defects in the H2 phase may have acquired other quantum numbers 
in the transition H ,  -+ H2,  which pertain to the H ,  phase rather than to the H ,  phase. 

The isomorphism (3.4) leads us to the conclusion that point singularities in the 
H ,  phase that are contained in Im {n2(G/H2) + nl(G/H1)) cannot develop a line 
singularity in the transition H ,  + H,. These point defects will therefore either survive 
the transition H ,  -+ H2 (possibly by converting their quantum numbers) or vanish. On 
the other hand, those point defects in the H ,  phase not contained in Im {n2(G/H2) --t 
nl(G/H1)} will develop a (finite) line singularity in the phase transition H ,  + H,, as 
may be inferred from the following: 

.rr,(G/H,)/Im {n,(GIH,) -+ 712(G/H1)} = 712(G/H,)lKer {712(G/H1) + 711(H,/H,)} 
= Im {712(G/H1) + 711(Hl/H,H. (3.9) 

The isomorphism (3.5) reveals that line singularities in the H2 phase that originate 
from a monopole in the H ,  phase correspond to the trivial element of n1 (GIH,) : these 
open line defects cannot exist when G is broken directly to H,. By the same token, 
(3.5) shows that line defects in the H ,  phase that can exist when H ,  is broken to H,, 
but that do not descend from a point defect in the H ,  phase, correspond to non-trivial 
elements of n1(G/H2). In other words, these line defects are infinitely long line defects 
which have no analogue in the H, phase. They are therefore called new infinite line 
defects. As a formula we have 

n,(H,/H,)/Im {n,(G/H1) + n,(H,/H,)} n(H,/-ff,)/Ker {711(H1/4) + 7Cl(G/H,)} 
= Im {711(H,/H2) + 7Cl(G/H,)} (3.10) 

where we again used the exactness of the sequence (3.1). 
Finally, we note that (3.6) contains the evident statement that the line defects in the 

H ,  phase that can also exist when, instead of G, H ,  is broken to H2 correspond to the 
trivial element of nl(G/H1), i.e. they have no line defect charge in H,. Moreover, we infer 
from (3.6) that all elements of nl(G/H2) not contained in Im {n l (H , /H , )  + n1(G/H2)} 
correspond to non-trivial elements of nl (GIH, )  

In physical terms this means that these line defects in the H2 phase have an analogue 
in the H ,  phase and, consequently, they are infinite line defects. The quantum numbers 
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of the line singularities under consideration may, however, have been converted in the 
transition H, + H,. 

As an illustration, we consider a three- 
dimensional isotropic Heisenberg ferromagnet that undergoes two subsequent phase 
transitions. The symmetry G of the unbroken phase is the group of rotations G = SO(3). 
Below the Curie temperature the ferromagnet has a spontaneous magnetic moment 
thus breaking rotational invariance. The residual symmetry HI of this state is the group 
of rotations about the magnetisation axis, H, = SO(2) N U(1). Let us assume that at 
still lower temperatures there is a second phase transition, where the group U(l)  is 
broken to H, = C,, with C, being the group of rotations by the angle II. Whereas the 
first transition may be achieved by giving a non-zero expectation value to a spin-1 field, 
for this second transition to happen a field with spin 2 2 must develop a non-zero 
expectation value. For convenience we will consider the simply connected covering 
group G = SU(2) of SO(3) instead of SO(3) itself. This is not a severe limitation 
as we are mainly interested in the transition U( l )  + C,. The relevant non-trivial 
homotopy groups for the case under consideration are: n 2 ( G / H 1 )  N Z, indicating the 
possible existence of monopoles in the HI phase; n,(H,/H,) N 22, with 22  the set 
of even integers, showing that the (infinite and finite) line defects in the H, phase, 
when this state is reached by the transition from the H, phase, have an even charge; 
and n1(G/H2)  N 2, N (0, l}  which means that there is only one type of topologically 
non-trivial infinite line singularity in the H2 phase. When two such line defects coalesce 
they simply annihilate each other, since 1 + 1 = 0 in 2,. Thus the sequence (3.1) takes 
the form 

This ends our brief review of [15]. 

0 + n,(H,/H,) 0 + n,(G/H,) N 0 + n2(G/H1) N z 
(3.12) 

+ n,(H1/H2) N 22 + n1(G/H2)  3: 2, + n , ( G / H , )  N 0. 

Using the exactness of (3.12), we find that 

which shows that all infinitely long line defects of the H, phase are new line defects. 
This was to be expected as the H, phase supports no line singularities. A closer 
inspection of (3.13) reveals that Ker {n,(H1/H2) + nl(G/H2)} N 42, with 4 2  denoting 
the set (0, f4,  f8,  f12, ...}. Consequently, we obtain the isomorphism 

from which we infer that all point defects in the H, phase develop a (finite) line 
singularity in the transition H, + H,. More specifically, a point defect in the H, phase 
with charge n gives rise to a finite line defect with charge 4n in the H, phase. 

In conclusion, in the H, phase with symmetry U(l)  there can exist only point 
defects which upon entering the H2 phase become confined. Besides the finite line 
singularities with charges labelled by elements of 42, the H2 phase with symmetry C, 
also has infinite line singularities, the latter being characterised by an element of Z,. 

In the next section we discuss superfluid 3He in a magnetic field. In particular, we 
study the fate of point defects in 3He-A, when this phase goes over in the A, state. As 
it turns out, the situation is similar to the case of the ferromagnet we discussed above. 
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4. The A, -+ A, transition 

As before, we take instead of the SO(3) factors in (1.1) the covering groups SU(2)s and 
SU(2)L, i.e. we replace G by 

G = SU(2)S x SU(2)L x U(l)@. (4.1) 

Here, we assumed that the magnetic field is not too large, so that the group S0(3)s 
is not explicitly broken to the group U(l)s of rotations about the magnetic field axis. 
The case of a large magnetic field will be discussed towards the end of this section. In 
this instance with 

H, = U(1)s-o x U(1)L-m (4.2) 

and 

H2 = c y  x U(1)L-m (4.3) 

we have the coset spaces 

G / H ,  N (SU(2) x SU(2))/S"-L 
G / H 2  N (SU(2) x SU(2))/ZS-'. 

and 

with the real projective space Pf-@(R) denoting the circle Sf-" with antipodal points 
identified. The coset (4.5) with G replaced by G was first given by Bailin and Love 
[16]. Since the factor U(l)'-" in (4.2) is replaced by C;-@ in (4.3), only two antipodal 
points of the circle S f P L  in (4.4) survive in (4.5). 

The coset (4.5) may also be inferred directly from the value of the ordering matrix. 
In the spherical bases the value for the A, phase is [6]t 

a(') mSmL = (h 8 8) (4.7) 
x o o  

with ms,mL = l,O,-1, and r and x two non-zero arbitrary complex parameters. In 
dyadic notation (4.7) becomes 

amsmL = ri?& i?LL + xi?,, (4.8) 

where v t̂ = -(1/&)(6' + it?) and 6- = (1/&)(6' - it?), with a',#,@ = 6' x 6, a 
set of orthonormal vectors in spin space. Similarly, $ = -(l/&)(P' + ig ) ,  with 
S',P,@ = ê ' x & a set of orthonormal vectors in orbital space. It is now easily 
recognised that the coset space is the product of two SU(2) factors, which specify 
the orientation of the dreibein in spin and orbital space, respectively, factorised with 

t In [6] we erroneously stated that the phase with symmetry U(l)L-m is the A2 phase. The correct symmetry 
is Cs-* x U(lf-" with (4.7) the corresponding value of the ordering matrix [l]. 
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respect to the group7 CsPL. The factorisation reflects the observation that the ordering 
matrix (4.8) remains unchanged if one performs simultaneously a spin rotation about 
the 8 axis by an angle n, and an orbital rotation about the d axis by an angle -n. 
Under these operations 8' -b exp(+in)P, and t?+ -b exp(-in)P. Because of the absence 
of the last term in (4.8) in the case of 3He-A1, see (2.29), the corresponding ordering 
matrix is invariant under an arbitrary simultaneous rotation about the @ and d axis: 
v t̂ -b exp(icr)v^t, ê t exp(-ia)P. This explains the factor S, in (4.4). We note that the 
gauge group U(l)@ is not relevant for this analysis, since this group is intertwined with 
S0(3)s in the same manner as it is with S 0 ( 3 ) L .  Consequently, exp(i4) E U(l)* factors 
cancel in the process of factorisation. 

Having identified the coset spaces, the relevant homotopy groups follow directly. 
We have n,(G/Hl) N ZSFL,  n,(G/H,) N Zip., n1(H1/H2) N 2Zs-@, and 7r1(G/H1) N 

n 2 ( G / H 2 )  N n 2 ( H 1 / H 2 )  N 0. Consequently, the sequence (3.1) reduces to a form very 
much like the sequence (3.12) 

0 -b n,(H,/H,) 3: 0 -b n 2 ( G / H 2 )  N 0 -b n,(G/H,) N zs-L 
-b nl (H, /H, )  2: 2zS-@ -b n,(G/H,) N zf-" -b 7rl(G/H1) N 0 (4.9) 

and the conclusions are similar. More specifically, the A, phase supports no line 
defects, but it may have point defects that are topologically stable. The charges of 
these singularities being elements of Zs-L can take any integer value. In the transition 
A, -b A, the point defects develop a finite line singularity, and hence are confined in 
the A, phase. The charge of the finite line defects is nS-@ = 4nS-L = 0, f4, f8, ..., where 
nSpL is the charge of the point defect from which the line singularity descends. In the A, 
phase there are also line defects that are infinitely long. As the fundamental homotopy 
group n, (G/H,) N Zs-', it follows that two infinite line defects with non-trivial charge 
annihilate each other when they coalesce. Besides the difference in charge the finite 
and infinite line defects in the A, phase differ also in the group spaces involved, as is 
evident from the superscripts of the charges: S - for the finite and S - L for the 
infinite line singularities. 

We thus far assumed the system is not exposed to a strong magnetic field. For 
larger fields the symmetry group S0(3)s is explicitly broken to U(l)s, the group of spin 
rotations about the magnetic field axis. In this case we have instead of (4.4) and (4.5) 
the coset spaces 

G/Hl (U(1) x su(2))/s;-L (4.10) 

and 

G / H ,  N (U(1) x SU(2))/Zf-L (4.1 1) 

respectively. The coset space (4.6) remains unaltered. The relevant homotopy groups 
are given by n2(G/H1)  N nl(G/H1) N 0, cf [16], and also by n 2 ( G / H 2 )  N 0, and 
n 1 ( G / H 2 )  N 22. From this we infer that a strong magnetic field destroys the point 
defects that are present in the A, phase in not too large magnetic fields. This can 
easily be understood, as a radial point defect configuration is not compatible with the 

t It is obvious that the choice of sign in front of S and L in the superscript is arbitrary; the group may 
equivalently be denoted by Ci+L.  
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preferred direction introduced by a strong magnetic field. Because of the absence of 
point defects in the A, phase there are no finite line singularities in the A, phase. There 
are, however, still infinite line singularities in this phase which are labelled by elements 
of 22. 

As pointed out by Salomaa [17], monopoles may occur also in a different context 
as free ends of line singularities, namely in rotating superfluid 3He. More specifically, 
he argues that since vortices cannot perforate the A-B interface as such, a lattice of 
monopoles might materialise at this (rotating) phase boundary, each monopole being 
the endpoint of a vortex line in 3He-A or 3He-B. The density and charge of these 
monopoles will be such as to fulfil the macroscopic rotation condition in the plane of 
the interface. 
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